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Anomalous Effects of “Guest” Charges Immersed
in Electrolyte: Exact 2D Results
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We study physical situations when one or two “guest” arbitrarily-charged
particles are immersed in the bulk of a classical electrolyte modelled by a Cou-
lomb gas of ± unit point-like charges, the whole system being in thermal equi-
librium. The models are treated as two-dimensional with logarithmic pairwise
interactions among charged constituents; the (dimensionless) inverse tempera-
ture β is considered to be smaller than 2 in order to ensure the stability of the
electrolyte against the collapse of positive-negative pairs of charges. Based on
recent progress in the integrable (1+1)-dimensional sine-Gordon theory, exact
formulas are derived for the chemical potential of one guest charge and for
the asymptotic large-distance behavior of the effective interaction between two
guest charges. The exact results imply, under certain circumstances, anomalous
effects such as an effective attraction (repulsion) between like-charged (oppo-
sitely-charged) guest particles and the charge inversion in the electrolyte vicinity
of a highly-charged guest particle. The adequacy of the concept of renormal-
ized charge is confirmed in the whole stability region of inverse temperatures
and the related saturation phenomenon is revised.

KEY WORDS: Coulomb systems; logarithmic interactions; charge inversion;
renormalized charge; sine-Gordon model.

1. INTRODUCTION

This paper deals with physical situations when one or two “guest” charges,
say arbitrarily charged colloidal particles with a hard core of radius σ , are
immersed in a classical electrolyte modelled by an infinite Coulomb gas of
positive–negative unit charges. In order to obtain explicit results we con-
sider the point-like limit of the guest charges, i.e. σ/λ→ 0, where λ is a
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characteristic correlation length of electrolyte species; the obtained results
are not expected to be applicable to large-sized colloids. If the charges of
the guest particles are sufficiently large, anomalous counterintuitive phe-
nomena emerge in the system.(1)

One of such phenomena is the appearance, under some circumstances,
of an effective (i.e., mediated by the electrolyte) attraction between like-
charged colloids. While the traditional DLVO theory(2,3) always predicts
an effective repulsion between two like-charged colloids,(4,5) experimen-
tal measurements(6,7) and numerical simulations(8,9) provide evidence for
attraction, especially within confined geometries (close to a dielectric wall
or between two glass plates) but also in the bulk of the electrolyte.(10) It
was argued that the effective attraction of two like-charged colloids in the
presence of a single wall can arise also from a non-equilibrium hydrody-
namic effect.(11,12)

Another interesting effect is the overcharging, or the charge inversion,
of a highly charged colloid.(13) This effect occurs when the number of
electrolyte counterions in the vicinity of the colloidal surface becomes so
high that the colloidal bare charge is locally overcompensated. The charge
inversion has been observed experimentally by electrophoresis(14) and in
simulations.(15) Its theoretical explanation is based on Wigner-crystal the-
ories.(16,17)

The latter effect is related to the concept of renormalized charge.(18–23)

The true electric potential far from the colloid immersed in a weakly-
coupled electrolyte is supposed to exhibit the Debye–Hückel form, but
with a renormalized-charge prefactor which is different from the bare
charge of the colloid. An important feature, which occurs in the frame-
work of the nonlinear Poisson–Boltzmann equation, is that the renormal-
ized charge saturates monotonically at some finite value when the colloidal
bare charge goes to infinity.(22,23) Monte–Carlo simulations of a salt-free
colloidal cell model(24) indicate the existence of a maximum in the plot of
the renormalized charge versus the bare colloidal charge. Téllez and Tri-
zac(25) considered the possibility of a more general phenomenon of poten-
tial saturation.

A theoretical elucidation of anomalous phenomena requires to go
beyond mean-field approximations by incorporating electrostatic correla-
tions among electrolyte particles. Heuristic phenomenological approaches
applied so far are based on plausible, but not rigorously justified, argu-
ments. Some exactly solvable models are needed. The best candidates are
two-dimensional (2D) Coulomb systems with logarithmic pairwise inter-
actions among the charged constituents. The 2D Coulomb gas of ± unit
point-like charges is stable against the collapse of positive–negative pairs
of charges at high enough temperatures, namely for β < 2, where β is
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the (dimensionless) inverse temperature or coupling constant. The collapse
point β=2, at which the collapse starts to occur, is equivalent to the free-
fermion point of the Thirring representation of the 2D Coulomb gas;(26,27)

although the free energy and the particle density diverge, the truncated Ur-
sell correlation functions are finite at this point. In a recent work,(28) we
have solved exactly the 2D problem of one colloid immersed in the Cou-
lomb gas just at the free-fermion point. An explicit form of the induced
electric potential as a function of the bare colloidal charge was derived at
every point of the space. Based on this exact result, the concept of renor-
malized charge was shown to fail in this strong-coupling regime. On the
other hand, the anticipated phenomenon of the electric potential satura-
tion was confirmed at the free-fermion point.

Our present aim is to extend the exact treatment of the guest-
charge(s) problem to the whole Coulomb-gas stability region of inverse
temperatures 0�β<2. A first important step towards this aim has already
been done by solving exactly the equilibrium statistical mechanics of the
2D Coulomb gas in the stability regime (the bulk thermodynamics, spe-
cial cases of the surface thermodynamics and the large-distance behavior
of the two-body correlation functions) via an equivalence with the integra-
ble 2D Euclidean sine-Gordon theory; for a short review, see ref. 29. As is
shown in this paper, the problem of one (two) guest charge(s) immersed in
the Coulomb plasma is related to the evaluation of one-point (two-point)
expectation values of the exponential field in the sine-Gordon theory.
Based on recent progress in the latter topic, we derive explicit formulas for
the chemical potential of one guest charge and for the asymptotic large-
distance behavior of the effective interaction between two guest charges.
The exact results imply, under some circumstances, an effective attraction
(repulsion) between like-charged (oppositely-charged) guest particles and
the charge inversion in the electrolyte around a highly-charged guest par-
ticle. The adequacy of the concept of renormalized charge is confirmed in
the whole stability region 0�β<2. The related saturation phenomenon is
revised.

The paper is organized as follows. Basic facts about the bulk proper-
ties of the 2D symmetric Coulomb gas are summarized in Section 2. Sec-
tion 3 deals with the problem of one guest charge in the electrolyte. The
effective interaction between two guest charges immersed in the electro-
lyte is studied within a form-factor method for the equivalent sine-Gordon
model in Section 4. Based on the exact results of Section 4, the concept of
renormalized charge and the related saturation phenomenon are tested in
Section 5. A brief recapitulation and some concluding remarks are given
in Section 6.
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2. BASIC FACTS ABOUT THE 2D COULOMB GAS

We consider an infinite 2D plane � of points r ∈ R2, filled with a
homogeneous medium of dielectric constant = 1. The electrostatic poten-
tial v at a point r, induced by a unit charge at the origin 0, is given by
the 2D Poisson equation

�v(r)=−2πδ(r). (2.1)

The solution of this equation, subject to the boundary condition ∇v(r)→
0 as |r|→∞, reads

v(r)=− ln
( |r|
r0

)
, r ∈R2. (2.2)

The free length constant r0 will be set for simplicity to unity. This defi-
nition of the Coulomb potential in 2D maintains many generic proper-
ties (e.g., sum rules)(30) of “real” 3D Coulomb fluids with the interaction
potential v(r)=1/|r|, r ∈R3.

The symmetric Coulomb gas consists of two species of point-like par-
ticles with opposite unit charges qj ∈ {+1,−1}; to simplify the notation,
the elementary charge e is set to unity. The bulk properties of the system
in thermodynamic equilibrium are usually treated within the grand canon-
ical ensemble. The ensemble is characterized by the (dimensionless) inverse
temperature β, which plays the role of the coupling constant, and by the
couple of equivalent particle fugacities z+ = z− = z. Since the length scale
r0 in (2.2) was set to unity, the true dimension of z is [length]−2+(β/2). The
grand partition function of the plasma is defined by

�(z)=
∞∑

N+,N−=0

1
N+!N−!

∫
�

N∏
j=1

[
d2rj zqj

]
exp


−β

∑
j<k

qj qkv(|rj − rk|)

 ,

(2.3)

where N+ (N−) is the number of positively (negatively) charged particles
and N =N+ +N−. The system is stable against the collapse of positive–
negative pairs of unit point-like charges provided that the corresponding
Boltzmann factor r−β is integrable at short distances in 2D, i.e. for β <2.
In what follows, we shall restrict ourselves to this stability region of cou-
pling constants.
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To introduce the averaged many-particle densities, we denote by 〈· · · 〉β
the standard thermal average. At the one-particle level, one considers the
number density of particles of one sign

nq(r)=
〈∑
j

δq,qj δ(r − rj )

〉

β

, q=±1. (2.4)

Due to the charge symmetry and space homogeneity, n+ =n− =n/2 where
n is the total density of particles. At the two-particle level, one considers
the two-body number densities

nqq ′(r, r′)=
〈∑
j �=k

δq,qj δ(r − rj )δq ′,qk δ(r
′ − rk)

〉

β

, q, q ′ =±1, (2.5)

which are translationally invariant, nqq ′(r, r′)≡nqq ′(|r− r′|). The two-body
densities decouple at asymptotically large distance onto the product of the
corresponding one-body densities, limr→∞ nqq ′(r)= nqnq ′ . It is therefore
natural to introduce the Ursell functions, Uqq ′(r)= nqq ′(r)− nqnq ′ , which
go to 0 as r→∞. It is also useful to consider the pair distribution func-
tions gqq ′(r)=nqq ′(r)/(nqnq ′).

The short-distance behavior of the two-body densities is dominated by
the Boltzmann factor of the corresponding pair Coulomb potential.(31,32)

In particular, the pair distribution functions behave like

gqq ′(r) ∼ Cqq ′rβqq
′

as r→0, (2.6)

Cqq ′ = exp
[
β(µex

q +µex
q ′ −µex

q+q ′)
]
. (2.7)

Here, the excess (i.e. over ideal) chemical potential of the Coulomb-gas
species is defined by

exp
(
βµex

q

)
= zq

nq
, q=±1 (2.8)

and µex
Q with arbitrarily-valued Q represents an extended definition of the

excess chemical potential: µex
Q is the reversible work which has to be done

in order to bring a particle of charge Q (in units of the elementary charge
e) from infinity into the bulk interior of the considered Coulomb gas. In
the case of oppositely-charged particles, formula (2.6) reduces to

g+−(r)∼
(
z+
n+

)(
z−
n−

)
r−β as r→0. (2.9)
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According to Eq. (2.1), −�/(2π) is the inverse operator of the
Coulomb potential v(r). The grand partition function of the 2D Coulomb
gas (2.3) can be thus turned via the Hubbard–Stratonovich transformation
(see e.g. ref. 33) into

�=
∫ Dφ exp[−S(z)]∫ Dφ exp[−S(0)] (2.10)

with

S(z)=−
∫
�

d2r

[
1

16π
φ�φ+2z cos(bφ)

]
, b2 = β

4
(2.11)

being the 2D Euclidean action of the sine-Gordon model. Here, φ(r) is
a real scalar field and

∫ Dφ denotes the functional integration over this
field. The fugacity z is renormalized by the (diverging) self-energy term
exp[βv(0)/2], without changing the z-notation. The one- and two-body
densities of the charged particles in the plasma are expressible as averages
over the sine-Gordon action as follows

nq = zq〈eiqbφ〉, nqq ′(|r − r′|)= zqzq ′ 〈eiqbφ(r)eiq ′bφ(r′)〉. (2.12)

With regard to Eq. (2.8), it holds

exp(−βµex
q )=〈eiqbφ〉, q=±1. (2.13)

The short-distance behavior (2.9) is equivalent to

〈eibφ(r)e−ibφ(r′)〉∼ |r − r′|−4b2
as |r − r′|→0. (2.14)

Under this conformal normalization of the exponential field, the divergent
self-energy factor (which renormalizes z) disappears from statistical rela-
tions calculated within the sine-Gordon representation. The short-distance
formula (2.14) is the special case of a more general relation

〈eiaφ(r)eia′φ(r′)〉∼〈ei(a+a′)φ〉|r − r′|4aa′
as |r − r′|→0, (2.15)

valid in a restricted region of the parameters a and a′ such that the one-
point average 〈ei(a+a′)φ〉 be finite.

The sine-Gordon model (2.11) is integrable.(34) Its particle spectrum
consists of one soliton-antisoliton pair (S, S̄) with equal masses M and of
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S− S̄ bound states (“breathers”) {Bj ; j = 1,2, · · ·< 1/ξ} whose number at
a given b2 depends on the inverse of the parameter

ξ = b2

1−b2

(
= β

4−β
)
. (2.16)

The mass of the Bj -breather is given by

mj =2M sin
(
πξ

2
j

)
(2.17)

and this breather disappears from the spectrum just when mj = 2M. The
breathers exist only in a subinterval of the stability region 0�b2 < 1/2
(0�β < 2) of the point-like Coulomb gas. The lightest B1-breather, usu-
ally called the elementary one, has the mass

m1 =2M sin
(
πξ

2

)
(2.18)

and disappears from the particle spectrum just at the free-fermion point
b2 =1/2 (β=2). The soliton-antisoliton pair is present in the spectrum up
to the Kosterlitz–Thouless transition point b2 =1 (β=4) at which the sine-
Gordon theory ceases to be massive.

The (dimensionless) specific grand potential ω of the 2D Euclidean
sine-Gordon model, defined by

−ω= lim
|�|→∞

1
|�| ln� (2.19)

was found in ref. 35 by using the Thermodynamic Bethe ansatz:

−ω= m2
1

8 sin(πξ)
. (2.20)

Under the conformal normalization of the exponential fields (2.14), the
relationship between the fugacity z and the soliton/antisoliton mass M was
established in ref. 36,

z= �(b2)

π�(1−b2)

[
M

√
π�((1+ ξ)/2)

2�(ξ/2)

]2−2b2

, (2.21)
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where � stands for the Gamma function. Note that the mass M has
dimension of an inverse length. As a consequence of Eqs. (2.20) and
(2.21), one has

〈eibφ〉= 1
2
∂(−ω)
∂z

= M2

8z(1−b2)
tg
(
πξ

2

)
. (2.22)

Relations (2.21) and (2.22), together with the equality

n

2z
=〈eibφ〉, (2.23)

determine explicitly the density-fugacity relationship and consequently
the complete thermodynamics of the 2D Coulomb gas in the stability
region.(37)

3. ONE GUEST CHARGE IN THE ELECTROLYTE

Let us consider a point-like particle of charge Q with Q being an
arbitrarily valued real number; when Q is interpreted as the valence it has
to be an integer. The charge is put into the bulk interior of the 2D elec-
trolyte, say at the origin 0. The electrostatic potential induced by the guest
charge at a point r∈R2 is equal to −Qln|r|. Its effect on the constant spe-
cies fugacities z± is the following: zq → z

(1)
q (r)= z|r|βQq . The excess chem-

ical potential of the guest particle is given by

exp
(
−βµex

Q

)
= �[z(1)q (r)]

�(z)
, (3.1)

where �[z(1)q (r)] represents an obvious functional generalization of the
definition (2.3) of the grand partition function with position-dependent
particle fugacities. Performing the Hubbard–Stratonovich transformation,
the sine-Gordon representation of �[z(1)q (r)] takes the standard form of
Eq. (2.10) with the action

S(1)(z)=−
∫
�

d2r

(
1

16π
φ�φ+ z|r|4Qb2

eibφ + z|r|−4Qb2
e−ibφ

)
. (3.2)

We first shift the scalar field φ(r)→φ′(r)=φ(r)− i4Qb ln|r|. Using subse-
quently the Poisson equation �ln|r|=2πδ(r) and integrating by parts with
vanishing boundary contributions at |r|→∞, one gets

exp
(
−βµex

Q

)
=〈eiQbφ〉, (3.3)
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where the average is taken with the usual sine-Gordon action S(z) given
by Eq. (2.11). When Q = ±1, one recovers the previous result (2.13)
derived for the plasma constituents. Note the obvious symmetry µex

Q =
µex

−Q.
An exact formula for the expectation value of the exponential field

〈eiaφ〉, where the sine-Gordon parameter b2 lies inside the stability region
0�b2 < 1/2 and a is a free real parameter, was conjectured by Lukya-
nov and Zamolodchikov in ref. 38. In terms of our notation a=Qb [see
Eq. (3.3)], their formula reads

〈eiQbφ〉=
[
πz�(1−b2)

�(b2)

]Q2b2/(1−b2)

exp [Ib(Q)] , |Q|< 1
2b2

(3.4)

with

Ib(Q)=
∫ ∞

0

dt

t

[
sinh2(2Qb2t)

2 sinh(b2t) sinh t cosh[(1−b2)t ]
−2Q2b2e−2t

]
. (3.5)

The formula was “guessed” on the base of three exactly solvable cases of
the sine-Gordon theory: the semi-classical limit b2 → 0, the free-fermion
point b2 =1/2(39) and the special value of a=b, see Eq. (2.22). The valid-
ity of the formula was supported later by a “reflection” relationship with
the imaginary Liouville theory,(40) a numerical study of the sine-Gordon
model in finite volume(41) and a variational perturbation theory.(42) Other
checks, provided by the Coulomb-gas representation, are presented in the
next two paragraphs.

The integral (3.5) is finite provided that |Q| < 1/(2b2); at |Q| =
1/(2b2), the integrated function behaves like 1/t for t → ∞ what causes
the logarithmic divergence of the integral. In the Coulomb-gas picture,
the interaction Boltzmann factor of the Q-charge with an opposite unit
plasma charge (counterion) at distance r, r−β|Q|, is integrable at small r
in 2D if and only if β|Q|< 2. The stability region for µex

Q therefore is
expected to be |Q|<2/β; there is a collapse at |Q|=2/β characterized by
µex
Q →−∞. With regard to the relationship β= 4b2 we conclude that the

pair of Eqs. (3.4) and (3.5) passes the guest-charge collapse test.
The way in which 〈eiQbφ〉 diverges as |Q| approaches the collapse

value 1/(2b2) is another check provided by the Coulomb-gas representa-
tion. To show this fact, let us attach a hard core of radius σ around the
guest Q-charge. The effect of the Q-charge on the species fugacities is the
following: zq → zq(r)= zq |r|βQq θ(|r| − σ), where θ is the Heaviside step
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function. The procedure analogous to that outlined between Eqs. (3.1) and
(3.3) leads to

exp
[
−βµex

Q(σ)
]
=〈eiQbφ(0)〉σ , (3.6)

where the average is taken with the action

Sσ (z)=S(z)+ z
∫
r<σ

d2r
[
eibφ(r)+ e−ibφ(r)

]
. (3.7)

We expand 〈eiQbφ(0)〉σ in the lowest σ -order around the sine-Gordon
action S(z):

〈eiQbφ(0)〉σ =〈eiQbφ〉− z
∫
r<σ

d2r
[
〈eiQbφ(0)eibφ(r)〉+〈eiQbφ(0)e−ibφ(r)〉

]
+· · ·

(3.8)

Due to the symmetry µex
Q(σ)=µex

−Q(σ), it is sufficient to consider the case
Q>0. Applying in Eq. (3.8) the short-distance formula (2.15), the leading
σ -correction is obtained in the form

〈eiQbφ(0)〉σ ∼〈eiQbφ〉−πz〈ei(Q−1)bφ〉 σ
2−4Qb2

1−2Qb2
as σ →0. (3.9)

Close to the collapse value of the guest charge, i.e., when Q=1/(2b2)− ε
with ε→0+, one expands

σ 2−4Qb2

1−2Qb2
= σ 4b2ε

2b2ε
= 1

2b2ε
+2 ln σ +O(ε). (3.10)

Since the regularized 〈eiQbφ(0)〉σ has to be finite at the collapse Q =
1/(2b2), it follows from Eqs. (3.9) and (3.10) that the singular behavior

lim
ε→0+

〈
exp

[
i
(

1
2b

− εb
)
φ

]〉
∼ πz

2b2ε

〈
exp

[
i
(

1
2b

−b
)
φ

]〉
(3.11)

must take place. It is shown in the Appendix that the singular behavior
(3.11) is indeed reproduced by the conjectured Eqs. (3.4) and (3.5).
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4. TWO GUEST CHARGES IN THE ELECTROLYTE

Let us put two point-like particles into the bulk of the Coulomb
plasma, the one with the charge Q1 at the point r1 and the other with
the charge Q2 at the point r2. The electrostatic potential induced by these
two charges at a point r ∈R2 is equal to −Q1 ln|r − r1|−Q2ln|r − r2|. The
constant species fugacities z± are thus modified as follows: zq → z

(2)
q (r)=

z|r − r1|βQ1q |r − r2|βQ2q . The excess chemical potential of the guest 1,2-
charges as a whole is given by

exp
[
−βµex

Q1Q2
(r1, r2)

]
=|r1 − r2|βQ1Q2

�[z(2)q (r)]
�(z)

. (4.1)

Under the Hubbard–Stratonovich transformation, the sine-Gordon repre-
sentation of �[z(2)q (r)] takes the standard functional form of Eq. (2.10)
with the action

S(2)(z) = −
∫
�

d2r

(
1

16π
φ�φ+ z|r − r1|4Q1b

2 |r − r2|4Q2b
2
eibφ

+z|r − r1|−4Q1b
2 |r − r2|−4Q2b

2
e−ibφ

)
. (4.2)

Shifting the scalar field φ(r)→φ′(r)=φ(r)− i4Q1b ln|r − r1|− i4Q2b ln|r −
r2|, applying the Poisson equations �ln|r − rj |= 2πδ(r − rj ) (j = 1,2) and
integrating by parts, one arrives at

exp
[
−βµex

Q1Q2
(|r1 − r2)|

]
=〈eiQ1bφ(r1)eiQ2bφ(r2)〉, (4.3)

where the average is taken with the usual sine-Gordon action (2.11). The
effective interaction energy between the guest 1,2-charges is defined by

EQ1Q2(|r1 − r2|)=µex
Q1Q2

(|r1 − r2|)−µex
Q1

−µex
Q2
. (4.4)

With respect to the relation (3.3), it holds

exp
[−βEQ1Q2(|r1 − r2|)

]= 〈eiQ1bφ(r1)eiQ2bφ(r2)〉
〈eiQ1bφ〉〈eiQ2bφ〉 . (4.5)

At asymptotically large distance |r1 − r2| → ∞, the two-point correlator
〈eiQ1bφ(r1)eiQ2bφ(r2)〉 decouples onto the product 〈eiQ1bφ〉〈eiQ2bφ〉 and so the
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interaction energy goes to zero as it should be. From Eq. (4.5) one then
gets

−βEQ1Q2(|r1 − r2|)∼ 〈eiQ1bφ(r1)eiQ2bφ(r2)〉
〈eiQ1bφ〉〈eiQ2bφ〉 −1, |r1 − r2|→∞. (4.6)

This means that the asymptotic large-distance behavior of the effective
interaction energy between the guest particles is related to the large-
distance behavior of the corresponding two-point correlation function of
exponential fields associated with the 2D sine-Gordon theory.

For the 2D Euclidean sine-Gordon model, like for any integrable 2D
theory, the two-point correlation function of local operators Oa (a is a
free parameter) can be formally expressed as an infinite convergent series
over multi-particle intermediate states,(43)

〈Oa(r)Oa′(r′)〉 =
∞∑
N=0

1
N !

∑
ε1,...,εN

∫ ∞

−∞
dθ1 . . . dθN

(2π)N
Fa(θ1, . . . , θN)ε1...εN

εN ,··· ,ε1Fa′(θN , . . . , θ1) exp


−|r − r′|

N∑
j=1

mεj cosh θj


 ,
(4.7)

where ε indexes the particles [say ε=+(−) for a soliton (antisoliton) and
ε = j for a Bj -breather] and the rapidity θ ∈ (−∞,∞) parametrizes the
energy and the momentum of the corresponding particle. The form factors

Fa(θ1, . . . , θN)ε1,··· ,εN = 〈0|Oa(0)|Zε1(θ1), . . . ,ZεN (θN)〉 (4.8)
εN ,··· ,ε1Fa′(θN , . . . , θ1) = 〈ZεN (θN), . . . ,Zε1(θ1)|Oa′(0)|0〉 (4.9)

are the matrix elements of the operator at the origin, between an N -parti-
cle in-state (being a linear superposition of free one-particle states |Zε(θ)〉)
and the vacuum. The first N =0 term of the series expansion (4.7) corre-
sponds to the decoupling 〈Oa〉〈Oa′ 〉.

The form-factor representation (4.7) is particularly useful in the limit
|r − r′| → ∞, where the dominant contribution to the truncated correla-
tion function 〈Oa(r)Oa′(r′)〉− 〈Oa〉〈Oa′ 〉 comes from a multi-particle state
with the minimum value of the total particle mass

∑N
j=1mεj , at the point

of vanishing rapidities. As was already mentioned, the lightest particle
in the stability region 0�b2 < 1/2 is the elementary breather B1. For
this particle, the one-particle form factors Fa(θ)1 and 1Fa′(θ)= Fa′(θ)1
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of the exponential operator Oa(r)= exp [iaφ(r)] were calculated in refs. 44
and 45:

Fa(θ)1 ≡〈0|eiaφ |B1(θ)〉=−i〈eiaφ〉
√
πλ

sin(πξa/b)
sin(πξ)

, (4.10)

where

λ= 4
π

sin(πξ) cos
(
πξ

2

)
exp

{
−
∫ πξ

0

dt

π

t

sin t

}
(4.11)

and ξ is defined in Eq. (2.16). Since the form factor (4.10) does not
depend on the rapidity, the integration over θ in (4.7) can be done explic-
itly by using the relation

∫ ∞

−∞
dθ

2
e−rm1 cosh θ =K0(m1r)∼

(
π

2m1r

)1/2

exp(−m1r) as r→∞,

(4.12)

where K0 is the modified Bessel function of second kind.(46) On the base
of the asymptotic equivalence (4.6), the large-distance behavior of the
effective interaction energy is finally found in the form

βEQ1Q2(r)∼ [Q1][Q2]λ
(

π

2m1r

)1/2

exp(−m1r), r→∞. (4.13)

Here, the symbol [Q] stands for the ratio

[Q]= sin (πβQ/(4−β))
sin (πβ/(4−β)) . (4.14)

Using the thermodynamic formulas derived at the end of Section 2, the
mass m1 (which plays the role of the inverse charge–charge correlation
length of the Coulomb-gas particles) is expressible as

m1 =κ
[

sin (πβ/(4−β))
πβ/(4−β)

]1/2

, (4.15)
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where κ=√
2πβn denotes the inverse Debye length. The β-dependence of

the parameter λ, defined by Eq. (4.11), reads

λ= 4
π

sin
(

πβ

(4−β)
)

cos
(

πβ

2(4−β)
)

exp

{
−
∫ πβ/(4−β)

0

dt

π

t

sin t

}
. (4.16)

An interesting feature of the result (4.13) is that the effective interaction
energy factorizes into the product of separate charge contributions [Q]
from each of the guest particles.

We would like to emphasize that the asymptotic formula (4.13) was
derived for the guest particles of point-like nature. Its rigorous validity is
therefore restricted to such guest charges which do not collapse with an
opposite unit counterion from the electrolyte, i.e. to the values |Q1|, |Q2|<
2/β. Since the function [Q] is analytic at every real Q, the stability border
|Q| = 2/β does not represent an exceptional point at which a singularity
emerges (like it was in the case of the excess chemical potential determined
by Eqs. (3.3)–(3.5)). The explanation of this important fact follows from
the definition (4.4) of the effective interaction energy: if one of the guest
charges passes or is beyond its collapse value, say |Q1|�2/β, both excess
chemical potentials µex

Q1Q2
(|r1 − r2|) and µex

Q1
tend to −∞ in such a way

that their difference is expected to keep a finite value. We therefore sug-
gest that the formula (4.13) remains valid for arbitrary real values of Q1
and Q2, and corresponds to the limit of a small hard-core radius σ (such
that m1σ �1) around the guest charges. In what follows, we shall refer to
this conjecture as “the regularization hypothesis”.

The interaction energy EQ1Q2(r) is repulsive (attractive) at asymptot-
ically large distance r when it goes to zero from above (below). When
the amplitudes of the guest charges are the same, i.e. |Q1| = |Q2|, the
interaction energy (4.13) exhibits the vacuum-type behavior: it is repul-
sive for Q1 =Q2 and, since [−Q] = −[Q], attractive for Q1 = −Q2. The
situation is more complex when the amplitudes of the guest charges dif-
fer from one another. Let us analyze the plot of [Q] as a function of
(say positive) bare charge Q for a fixed value of β in the stability range
〈0,2). In the interval Q ∈ 〈0, (2/β)− (1/2)〉, [Q] increases monotonically
from 0 to its maximum at the end-point of this interval. In the subse-
quent interval Q ∈ 〈(2/β)− (1/2), (4/β)− 1〉, which contains the stability
border Q=2/β, [Q] is a decreasing function of Q but still keeps the posi-
tive sign of Q. Such behavior means physically that by increasing the bare
charge of one of the guest particles the effective interaction energy weak-
ens which is a counterintuitive phenomenon. The function [Q] changes
sign when Q passes the value (4/β)− 1; under the assumption of valid-
ity of the regularization hypothesis, this indicates an effective change of
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Fig. 1. The function [Q] versus the bare charge Q for various values of β.

sign of the charge. Appropriate combinations of the Q1,Q2-charges in
the factorized relation (4.13) can therefore lead to an effective attraction
(repulsion) between like-charged (oppositely-charged) guest particles. The
described scenario repeats itself when increasing Q due to the periodicity
relation [Q]= [Q+ (8/β)−2].

The above discussed plot of [Q] versus the (positive) bare charge Q
is presented graphically for various values of the electrolyte coupling con-
stant β in Fig. 1. The solid-line parts of the plots correspond to the
interval 0<Q< 2/β for which the formula (4.13) is valid rigorously, the
dashed-line parts of the plots correspond to Q�2/β, when the formula
(4.13) is applicable under the assumption of the regularization hypothesis.

5. RENORMALIZED CHARGE

Let us put one point-like particle of charge Q at the origin 0 and look
for the evoked density profiles nq(r) of the electrolyte species q=±1. One
can formally follow the procedure for two guest particles (one of which
has the charge q=±1 of the electrolyte species) outlined at the beginning
of Section 4, to obtain

nq(r)= z 〈e
iQbφ(0)eiqbφ(r)〉

〈eiQbφ〉 , q=±1. (5.1)
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Note that in the special case Q = 0 the spatially-homogeneous relation
(2.23) is reproduced. At asymptotically large distance r from the guest
Q-charge, the straightforward application of the form-factor method
explained in Section 4 provides the result

nq(r)∼nq
{

1− [q][Q]λ
(

π

2m1r

)1/2

exp(−m1r)

}
, r→∞, (5.2)

where the symbols [q], [Q] are defined by Eq. (4.14) and the parameters
m1, λ by the respective relations (4.15) and (4.16).

The charge density ρ of electrolyte unit charges is defined as ρ(r)=
n+(r)−n−(r). Since [q]=q for q=±1, one finds that

ρ(r)∼−n[Q]λ
(

π

2m1r

)1/2

exp(−m1r), r→∞. (5.3)

The average electrostatic potential ψ induced by the guest Q-charge
is related to the charge-density profile through the 2D Poisson equation,

�ψ(r)=−2πρ(r). (5.4)

Inserting here the asymptotic formula (5.3) and considering the circularly
symmetric Laplacian �= r−1dr (rdr ), the dimensionless electric potential
βψ can be shown to behave at large distance r from the Q-charge as
follows

βψ(r)∼
(
κ

m1

)2

[Q]λ
(

π

2m1r

)1/2

exp(−m1r), r→∞. (5.5)

In the Debye-Hückel limit β→0 and for finite Q, it holds [Q]∼Q, m1 ∼κ
and λ∼β. Eq. (5.5) thus reduces to the well-known result (see e.g. refs. 1
and 28)

βψDH(r)∼βQ
( π

2κr

)1/2
exp(−κr), r→∞. (5.6)

The asymptotic behaviors (5.5) and (5.6), considered, respectively, in terms
of the dimensionless combinations m1r and κr, exhibit the same type of
the fall-off. This fact confirms the adequacy of the concept of renormal-
ized charge(18–25) in the stability weak-coupling regime of the Coulomb
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gas. Eq. (5.5) is consistent with Eq. (5.6) provided that one introduces the
renormalized charge Qren as follows

βQren =
(
κ

m1

)2

[Q]λ. (5.7)

This formula can be simplified to

Qren(β,Q)=A(β) sin
(
πβQ

4−β
)
, (5.8)

where the positive amplitude A(β) is given by

1
A(β)

= 1
2
(4−β) sin

(
πβ

2(4−β)
)

exp

{∫ πβ/(4−β)

0

dt

π

t

sin t

}
. (5.9)

As was mentioned above, because of the point-like nature of the guest
Q-charge the rigorous validity of the result (5.8) is restricted to |Q|<2/β.
Changing Q from 0 towards positive real values, the renormalized charge
(5.8) increases monotonically up to its maximum A(β) at the point Q=
(2/β)− (1/2). Increasing then Q from (2/β)− (1/2) up to the stability
border 2/β, Qren paradoxically decreases while still keeping the positive
sign of the bare charge Q. This scenario resembles the one observed in
the Groot’s Monte–Carlo simulations of the salt-free (only counterions are
present) colloidal cell model.(24)

Under the assumption of validity of the regularization hypothesis, one
can further increase the value of Q beyond 2/β in the relation (5.8). Qren
changes its positive sign to the negative one at Q= (4/β)−1. This change
of the sign is closely related to the effect of charge inversion:(13–17) since
the total screening cloud of electrolyte particles must compensate exactly
the bare charge Q of the guest particle (the electroneutrality sum rule), the
fact that the charge density (5.3) goes to 0 at asymptotically large distance
r from above is the evidence of the charge inversion starting at some dis-
tance from the guest Q-charge.

The renormalized charge Qren is a periodic function of Q. This is why
going with Q→ ∞ does not imply the saturation of Qren at some finite
value. Instead, Qren oscillates between the two finite ±A(β) extremes. With
regard to Eq. (5.5), the induced electrostatic potential exhibits the same
type of the oscillatory behavior as Q→∞ what contradicts the idea of the
monotonic electric potential saturation.(25)
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6. CONCLUSION

Let us summarize briefly the crucial results of the present work.
Section 3 deals with the case of one point-like particle of charge Q

(with |Q|< 2/β) immersed in the bulk of the stable 2D Coulomb gas.
Passing to the sine-Gordon representation, we were able to relate in Eq.
(3.3) the excess chemical potential µex

Q of the guest charge to the expecta-
tion value of the exponential field. The explicit form of the latter quan-
tity was conjectured by Lukyanov and Zamolodchikov,(38) see Eqs. (3.4)
and (3.5), and subsequently verified by various methods. Our Coulomb-gas
formulation provides two other checks of this conjecture: the guest-charge
collapse test at |Q|=2/β and the predicted singular behavior (3.11) of the
exponential-field expectation close to the collapse value of Q= (2/β)− ε
(ε→0+).

The problem of two guest point-like particles, charged by Q1 and
Q2 and being at distance r from one another, is studied in Section 4.
Using the form-factor method for the two-point correlation functions in
the sine-Gordon formulation of the problem, we have derived the explicit
formula (4.13) for the effective interaction energy of the two guest charges
EQ1Q2(r) at asymptotically large distance r→∞. This formula is valid rig-
orously for |Q1|, |Q2|< 2/β; in a subspace of this region of charge val-
ues we have noticed an anomalous weakening of the effective interaction
when one of the guest charges is increasing. Since in the definition (4.4) of
EQ1Q2(r) the divergences of chemical potentials (caused by the collapse of
guest charge with electrolyte counterions) cancel with each other, we have
suggested an extended validity of the formula (4.13) for arbitrary values
of Q1 and Q2 (the regularization hypothesis). Then, under certain circum-
stances (especially, the inequality |Q1| �= |Q2| must hold and one of the
guest charges has to be large enough), the result (4.13) implies an effec-
tive attraction (repulsion) between like-charged (oppositely-charged) guest
particles.

The adequacy of the concept of renormalized charge was confirmed
in Section 5. This is not a surprise: in the whole stability interval of
inverse temperatures 0�β < 2, the large-distance behavior of two-point
correlators is determined by the form-factor of the same particle from the
sine-Gordon spectrum, namely the B1-breather with the lightest mass m1
playing the role of the inverse correlation length of electrolyte species. The
large-distance behavior of the induced electric potential (5.5), considered
in terms of the dimensionless combination m1r, is therefore basically the
same in the Debye-Hückel limit β→ 0 as well as at every point β which
belongs to the stability interval, up to the renormalized-charge prefactor.
The renormalized charge Qren, considered as a function of the (positive)
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bare charge Q, exhibits a maximum at Q= (2/β)− (1/2) which is in the
range |Q|< 2/β of the rigorous validity of the formula (5.8). Under the
assumption of validity of the regularization hypothesis, increasing Q can
produce the effect of charge inversion. Going with Q→ ∞ in Eq. (5.8)
does not imply the saturation of Qren at some finite value. Instead, Qren
oscillates between two finite extremes. The same property holds for the
electric potential in the electrolyte region which contradicts the idea of the
monotonic potential saturation.(25)

The previous results obtained at the free-fermion (collapse) point β=
2(28) are different from the present ones concerning the stability inter-
val 0�β < 2 in the following aspects. First, the concept of renormal-
ized charge fails at β = 2. Second, at β = 2, when the bare charge Q→
∞ the induced electrostatic potential saturates monotonically at a finite
value in each point of the electrolyte region. The reason for the funda-
mental differences is obvious. The lightest B1-breather disappears from
the particle spectrum of the sine-Gordon model just at β = 2, and the
asymptotic behavior of two-point correlation functions at this coupling
constant is governed by the soliton-antisoliton pair. Since m1 → 2M as
β → 2, the particle mass in the exponential decay is a continuous func-
tion of β at β = 2. On the other side, the inverse-power-law asymptotic
behavior, which is determined by the form-factor of the dominant par-
ticle(s) in the sine-Gordon spectrum, undertakes an abrupt modification
when passing through the β=2 point. The basic qualitative features of the
results obtained at the free-fermion point β=2 are expected to be present
also for such β>2 where the soliton-antisoliton pair exists. It is known(34)

that the soliton-antisoliton pair disappears from the sine-Gordon particle
spectrum (and the sine-Gordon theory ceases to be massive) at the point
b2 = 1 (β = 4) which corresponds to the Kosterlitz–Thouless transition of
infinite order from the conducting (fluid) phase to the insulating phase. We
conclude that the 2D results obtained in the weak-coupling regime of the
Coulomb gas 0�β < 2 differ substantially from those in the strong-cou-
pling regime 2 �β <4.

In 3D, the Coulomb gas of point-like particles is thermodynamically
unstable against collapse of positive–negative pairs of charges for any
β >0 since the corresponding Boltzmann factor exp(β/r) is not integra-
ble at short distances. A short-distance regularization of the 3D Coulomb
potential influences fundamentally the sum of species densities, i.e. the
total particle number density. On the other hand, the charge density of the
electrolyte particles induced by some guest charges is expected to be finite
even in the point-like particle limit. One might therefore suggest that some
basic features of the 2D electrostatic phenomena presented in this paper
remain valid also in 3D, maybe also in the strong coupling regime.
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APPENDIX A

According to the conjectured Eqs. (3.4) and (3.5), it holds

lim
ε→0+

〈
exp

[
i
(

1
2b

− εb
)
φ

]〉
∼
[
πz�(1−b2)

�(b2)

]1/4b2(1−b2)

exp (I1 + I2 + I3) ,

(A.1)

where

I1 =
∫ 1

0

dt

t

{
sinh(t)

2 sinh(b2t)cosh[(1−b2)t ]
− 1

2b2
e−2t

}
, (A.2)

I2 =
∫ ∞

1

dt

t

{
sinh(t)

2 sinh(b2t)cosh[(1−b2)t ]
−1− 1

2b2
e−2t

}
, (A.3)

I3 =
∫ ∞

1

dt

t
exp(−4b2εt)=−C− ln(4b2ε)+O(ε) (A.4)

and C is the Euler’s constant. Using the same Eqs. (3.4) and (3.5) for
expressing the expectation value of the exponential field on the rhs of
Eq. (3.11), one gets

lim
ε→0+

〈
exp

[
i
(

1
2b − εb

)
φ
]〉

〈
exp

[
i
(

1
2b −b

)
φ
]〉 ∼ πz

2b2ε

�(1−b2)

�(b2)
exp

(
I ′

1 + I ′
2 −C− ln 2

)
,

(A.5)

where

I ′
1 =

∫ 1

0

dt

t

{
sinh[(1−2b2)t ]

sinh(t)
+1−2(1−b2)e−2t

}
, (A.6)

I ′
2 =

∫ ∞

1

dt

t

{
sinh[(1−2b2)t ]

sinh(t)
−2(1−b2)e−2t

}
. (A.7)

With the aid of the integral representations(46)

C =
∫ 1

0

dt

t

(
1− e−t)−

∫ ∞

1

dt

t
e−t , (A.8)

ln 2 =
∫ ∞

0

dt

t

(
e−t − e−2t

)
, (A.9)
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the argument of the exponential on the rhs of Eq. (A.5) can be written as

I ′
1 + I ′

2 −C− ln 2=
∫ ∞

0

dt

t

{
sinh[(1−2b2)t ]

sinh(t)
+ (2b2 −1)e−2t

}
.

(A.10)

Finally, considering in Eq. (A.5) the integral representation of the loga-
rithm of the Gamma function (46)

ln �(x)=
∫ ∞

0

dt

t
e−t

[
(x−1)+ e−(x−1)t −1

1− e−t
]
, Re(x)>0, (A.11)

the proof of the desired formula (3.11) becomes accomplished.
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